Структура сетей и протоколов

Различные типы сетей все плотнее интегрируются в нашу жизнь, хотя мы этого порой даже не замечаем, в то время как они раскрывают перед нами все более широкие возможности. Кто-то про себя подумает: «Да не нужны мне эти буржуйские штучки!», - и будет неправ. В ближайшее время всевозможные сети опутают нашу жизнь со всех сторон. Все, начиная от общения, заканчивая удаленным управлением бытовыми устройствами у нас дома и на работе, будет управляться по сети. У кого сейчас нет сотового телефона, в то время как еще 4 года назад они были не так уж и распространены. Так в ближайшие годы не останется человека без ноутбука с беспроводной технологией Wi-Fi. Уже сейчас вы можете проверять факсы и почту, пришедшие на ваш домашний телефонный номер удаленно. Если учесть, что все они могут коммутироваться между собой и на аппаратном уровне могут быть интегрированы в любые устройства, то их возможности практически безграничны. Вы, например, сможете на расстоянии проверять готовкой пищи в микроволновой печи, с компьютера проверять безопасность у вас в квартире, смотреть за ребенком, оставшимся одним дома. Естественно, за прокладку и настройки таких сетей в ближайшие годы вы выложите кругленькую сумму, но есть вариант все сделать самому, что гораздо выгоднее и приятнее.

За последнее время появилось большое количество новых стандартов в области сетей. Это породило немало споров и замешательства. Чтобы уметь строить собственные сети или хотя бы уметь настраивать существующие, необходимо понимание принципов работы сетей. Чтобы разобраться в существующей ситуации с сетями, мы предлагаем этот материал.

Классификация

Все вычислительные сети (ВС), в основном, классифицируются по географическому признаку. Они подразделяются на локальные (LAN), региональные (MAN) и глобальные (WAN). LAN работают на территории одного здания или части города. В качестве среды передачи данных используется «витая пара» (UTP), коаксиальный кабель и иногда оптоволокно («оптика» в просторечье). MAN объединяет локальные сети и как правило, использует оптоволокно. WAN, в отличие от предшественников имеет низкую скорость передачи данных и большее количество ошибок передачи. Для этого используются средства телекоммуникации: телефонные линии, спутниковые средства и микроволновые передатчики.

По способу разделения ресурсов ВС могут быть одноранговыми, клиент-серверными (с выделенным сервером) и смешанными. В одноранговых сетях все компьютеры равноправны и отсутствует централизованное управление ресурсами и службами на компьютерах. В каждый конкретный момент каждый компьютер может быть сервером или клиентом, предоставляя или используя ресурсы других компьютеров. Такие сети имеют смысл при наличии в сети 5-15 компьютеров и отсутствии единых распределяемых приложений. При работе с выделенным сервером используется клиент-серверная схема, которая позволяет централизованно обеспечивать безопасность и управление, предоставлять централизованное хранилище ресурсов и обеспечивать различные сервисы (например, Web-сервисы, распределенное использование приложений). Такая система более сложна в обслуживании, но предоставляет гораздо больше удобства, безопасности и хорошо масштабируется.

Способ, с помощью которого сообщение обрабатывается структурными элементами (каналами связи и интерфейсами) и передает­ся по сети, называется сетевым протоколом. Проблемы совмеще­ния различных элементов ВС привели Международ­ную организацию стандартизации ISO к созданию эталонной модели архи­тектуры ВС OSI. В модели OSI принят принцип слоистой архитектуры, в которой все функции сети разделены на уровни таким образом, что вышележащие уровни используют услуги по переносу информации, предоставляемые нижележащими уровнями, т. е. взаимодействуют через интерфейс, который должен сохраняться, а сами уровни могут быть заменены в любой момент. Единственной проблемой может служить тот факт, что некоторые фирмы производители к тому времени уже разработали и внедрили свой стандарт, который может вписываться, а может несколько отличаться от модели OSI

Модель OSI

Итак, эта эталонная модель распределяет сетевые функции по семи уровням:

При передаче информации в модели OSI используется 3 типа адресов:

 

 

 

 

 

 

 

 

 

7 уровень

 

ПРИКЛАДНОЙ

6 уровень

ПРЕДСТАВИТЕЛЬСКИЙ

5 уровень

СЕАНСОВЫЙ

4 уровень

ТРАНСПОРТНЫЙ

3 уровень

СЕТЕВОЙ

2 уровень

КАНАЛЬНЫЙ

LLC

MAC

1 уровень

ФИЗИЧЕСКИЙ

Рис. 1. Многоуровневая архитектура связи

На физическом уровне определяются характеристики электри­ческих сигналов, напряжения, механические свойства кабелей и разъемов. На этом уровне определяется физическая топология сети, способ ко­дирования информации и общей синхронизации битов. Данные на этом уровне рассматриваются как прозрачный поток битов.

Топология сетей описывает физическое расположение программно-аппарат­ных компонентов (физическая топология) и методы перемещения данных в среде (логическая топология). К ним относятся:

·         общая шина (bus);

·         кольцо (ring);

·         звезда (star);

·         сотовая (cellular);

·         полносвязная (mesh).

Комбинация этих топологий дает гибридную топологию (звезда на общей шине, звезда на кольце). Именно эта топология наиболее часто встречается в современных сетях. При выборе топологии необходимо учитывать множество факторов, таких, как расстояние, цена, вопросы безопасности, планируемая к использованию операционная система, использование сущест­вующего оборудования и т. д.

В системах с топологией общая шина сетевые адаптеры под­ключены параллельно к единственному каналу связи - магистра­ли. Управление шиной может быть как централизованное (станцией-арбитром), так и распределенное (равноправное). Одной из самых известных сетей с общей шиной является Ethernet фирмы Xerox на коаксиальном кабеле.

Шинная топология представляет собой быстрейший и про­стейший способ установки маленькой или временной сети. К недостаткам такой топологии следует отнести уязвимость при неполадках в магистральном кабеле и трудность изоляции от­дельных станций или других компонентов при неправильной ра­боте.

Для кольцевых систем характерно наличие однонаправленно­го замкнутого канала связи, который разрывается сетевыми уст­ройствами доступа (интерфейсами). Посланное одним интерфей­сом сообщение последовательно проходит по кольцу от одного узла к другому, пока не доберется до узла-получателя или не вер­нется к своему отправителю. Классификация кольцевых систем основывается на примене­нии разных методов множественного доступа. Наиболее известны петли с жезловым (маркерным) управлением, которое реализовано в сети Token Ring фирмы IBM и волоконно-оптической сети FDDI (Fiber Distributed Data Interface), имеющей пропускную способность 100 Мбит/с и использующей топологию двойного (избыточного) кольца. В случае повреждения одного из них сеть автоматически переконфигурируется.

Топология кольца имеет ряд недостатков: его трудно поддер­живать и переконфигурировать в больших сетях. Кроме того, не­поладки в кабеле или одной станции кольца фатальны для всего кольца.

Сети со звездной топологией имеют в качестве центрального узла концентратор, который как бы тиражирует пришедшее по одной из линий связи сообщение и рассылает его всем остальным станциям сети. Таким образом, организуется широковещательная передача. В качестве примера подобных сетей можно привести сеть Fast Ethernet на витой паре со скоростью передачи 100 Мбит/с.

К достоинствам таких топологий следует отнести прекрасное масштабирование, независимость работоспособности всей сети от неполадок на отдельной станции или фрагменте кабельной систе­мы, относительная простота расширения сети и ее реконфигурирования. Недостатками топологии является необходимость большого количества кабеля, больше, чем при остальных топологиях, и за­висимость работоспособности сети от концентратора.

Сети с топологией в виде сот определяют принципы беспро­водной связи для географических областей, разделенных на ячей­ки (соты). Каждая ячейка представляет собой часть общей облас­ти, внутри которой функционируют конкретные соединения, свя­зывающие устройства с центральной станцией. Центральные станции соединены в виде сетки. В этом случае при пересылке информации существует множество альтернативных маршрутов, что позволяет поддерживать отказоустойчивость сети, оптимизи­ровать нагрузку при передаче и гарантировать минимальную за­держку при доставке сообщений. Пример таких сетей – Wi-Fi и Wi-Max, которые уже разворачиваются в Москве и Санкт-Петербурге, а также сети сотовой связи.

Физический уровень определяет, что вся информация в сетях передается виде пакетов, т.е. частей одного сообщения. Между пакетами посылается служебная информация и пакеты других сообщений. Таким образом, пользователям кажется, что их данные передаются одновременно. На самом деле, почти все сети в мире являются сетями с коммутацией пакетов. Способов коммутации множество, но основные из них два: установления виртуального соединения с подтверждением приема каждого пакета и передача дейтаграмм.

Установление виртуального соединения (канала) является гораздо более надежным способом обмена информации. При таком соединении, если пакет принят неправильно или испорчен (например, из-за помех в линии), то отправитель повторяет передачу. Дейтаграммы (короткие сообщения) пересылаются адресату без подтверждения получения каждой из них. О получении всего сообщения извещает целевая программа.

Для определения начала и конца пакетов используются управляющие служебные поля пакета с информацией о длине данных, фиксированная длина кадра или битстаффинг (включение 0 после каждой последовательности из 6 единиц, в том числе после заголовка и конца кадра).

Физический уровень определяет физические характеристики используемой среды передачи данных (коаксиальный кабель, витые пары, оптово­локно), организованной с помощью различных топологий. Он описывает также коммуникации с помощью радиосвязи и инфракрасных лучей (беспроводные сети), оптоволоконные кабели и кабель RS-232, используемый для подключе­ния модемов к компьютерам.

Канальный уровень определяет правила совместного ис­пользования узлами сети физического уровня. Протоколы этого уровня определяют, каким образом биты информации организу­ются в логические последовательности (кадры, фреймы), и распо­ложение и вид контрольной информации (заголовки и концевики). Этот уровень структурирован по двум подуровням: управлению доступом к среде - MAC (Media Access Control) и управлению ло­гической связью - LLC (Logical Link Control).

МАС-подуровень поддерживает множественный доступ к каналу связи, осуществляет прием и передачу информационных и управляющих кадров, обнаруживает ошибки по проверочной по­следовательности кадров либо по его длине. Физический MAC-адрес сетевой карты помещается в заголовок кадра и используется для идентификации приемника и/или источника.

На подуровне LLC определяется класс обслуживания, осуществляется контроль ошибок передачи, синхронизация кадров.

Сетевой уровень определяет, как передаются данные (пакеты). Как правило, прото­колы этого уровня дейтаграммные, но обеспечивающие высокую производительность сети. Прежде всего, они используются для получения служебной информации, такой как адреса для маршрутизации сообщений в многосегментной ЛВС, так как маршрутизаторы работают на сетевом уровне.

Транспортный уровень обеспечивает наивысший уровень управления процессом перемещения данных из одной системы в другую. С помощью обнаружения и коррекции ошибок транс­портный уровень обеспечивает качественную и точную доставку. Этот уровень обеспечивает получение всех данных и правильную очередность следования пакетов. На этом уровне между системами устанав­ливается виртуальная связь. Во время сеанса передачи две системы сами поддерживают передачу данных.

Уровень сеанса координирует обмен информацией между систе­мами. Этот уровень называется так по устанавливаемому и завер­шаемому сеансу коммуникации. Если одна система работает медленнее другой или пакеты передаются не в том порядке, то требуется координация. На уровне сеанса к пакетам добавляется информация, которую используют коммуникационные протоколы и которая слу­жит для поддержания сеанса до завершения передачи.

Уровень представления. Протоколы на уровне представления являются частью операционной системы и приложений, которые пользователь выполняет на компьютере. На этом уровне ин­формация форматируется для вывода на экран и печати, также происходит кодирование данных, форматирование, сжатие и т. д.

Прикладной уровень обслуживает запро­сы пользователей сети на совместно используемые услуги (элек­тронная почта, файлы и печать, базы данных и т. д.), организует санкционированный доступ к запрашиваемым ресурсам, защища­ет сеть от вторжения нарушителей. Пользователи дают команды запроса на сетевые устройства, которые оформляются в пакеты и передаются по сети с помощью протоколов более низкого уровня.

Стандарт IEEE 802

Расширяя физический и канальный уровень, стандарт сетевых коммуникаций Института инженеров в области электротехники и электроники IEEE 802, разработанный для физических компонентов сети, определяет, каким образом сетевой адаптер получает доступ к сетевому кабелю и как он передает данные.

В описание стандарта входят интерфейсные платы, мосты, маршрутизаторы и другие компоненты, используемые для создания сетей с применением коаксиального кабеля или "витой пары". Сюда включаются также глобальные сети, использующие общие носители, такие, как телефонная система. Стандарт 802 объединяет 16 компонентов, нас интересуют следующие:

802.3 – локальные сети CSMA/CD - множественный доступ с оп­ределением несущей и определением конфликтов (фактически Ethernet);

802.6 – региональные сети MAN (Metropolitan Area Network);

802.8 – техническая консультационная группа по оптоволоконным сетям;

802.11 – беспроводные сети;

802.16 – беспроводной широкополосный доступ.

Стандарты 802.3-802.7 позволяют компью­терам и устройствам многих независимых поставщиков логически связываться друг с другом с помощью "витой пары", коаксиально­го кабеля или других типов носителя.

 

 

 

 

 

 

 

 

 

 

 

ПРИКЛАДНОЙ

ПРЕДСТАВИТЕЛЬСКИЙ

802.10

СЕАНСОВЫЙ

802.1

ТРАНСПОРТНЫЙ

СЕТЕВОЙ

802.2

 

КАНАЛЬНЫЙ

802.3

802.4

802.5

802.6

802.9

802.11

802.12

ФИЗИЧЕСКИЙ

 

802.7, 802.8

 

Рис. 2. Сравнение OSI и IIEE 802

На каждом из выше перечисленных уровней модели OSI работают свои протоколы, владение которыми и составляет работу администратора сети. Понимание взаимодействия протокола с сетью позволяет вам создавать сети, начиная с домашней ЛВС, заканчивая большими сетями с гибридной топологией. Для этого требуется не только умение настраивать протоколы, но и умение на физическом уровне соединять сегменты сети.

Протоколы WAN

Протоколы ГВС позволяют связывать между со­бой на больших расстояниях не только отдельные компьютеры, но и ЛВС.

SLIP. Протокол для последовательных линий SLIP был спро­ектирован для обеспечения связи с сетями ТСР/IP через публич­ную телефонную сеть. В настоящее время этот протокол используется для связи по телефону с Ин­тернет-провайдером в Unix-системах.

SLIP действует на физическом уровне модели OSI. Несмотря на простоту реализации, этот протокол обладает рядом недостатков:

·         поддерживает только IP в качестве транспорта;

·         не поддерживает согласование IP-адресов;

·         не обеспечивает аутентификацию.

РРР. Протокол соединения РРР точка-точка используется как альтернатива SLIP. Он обладает рядом возможностей физиче­ского и канального уровней. К его достоинствам относятся:

·         контроль ошибок;

·         поддержка транспортов TCP/IP, IPX/SPX, NetBIOS;

·         согласование адреса IP поддержкой протокола динамической конфигурации узла DHCP;

·         пароль для регистрации входа.

Протокол РРР наиболее популярен для телефонного доступа в Интернет.

Х.25. Протоколы Х.25, предназначенные только для передачи данных, описывают взаимодействие на физическом, канальном и сетевом уровнях, отличаются повышенной надежностью и используются, в основном, в банковских сетях.

Frame Relay. Сеть с ретрансляцией кадров Frame Relay исполь­зует установление постоянного виртуального канала PVC между конечными точками для переноса данных. Сеть действует на скоростях от 56 Кбит/с до 1,544 Мбит/с.

Линии T1 и ТЗ. Цифровая линия Т1 представляет собой двух­точечную технологию передачи, которая состоит из 24 каналов по 64 Кбит/с каждый, т. е. 1,5 Мбит/с общей пропускной способ­ностью. Более быстрая линия называется ТЗ и представляет собой эквивалент 28 линий Т1 с общей скоростью передачи данных и голоса 44,736 Мбит/с.

Расходы по ежемесячному обслуживанию таких линий доста­точно высоки, поэтому возможна аренда только части полосы пропускания в виде нескольких каналов.

ISDN. Интегрированные службы цифровых сетей ISDN пред­назначены для комбинированной передачи голоса и данных через цифровые телефонные линии и специальные ISDN-модемы.

ISDN описывает взаимодействие на физическом, канальном и сетевом уровнях и использует мультиплексирование с разделени­ем времени (TDM) для преобразования аналоговых сигналов в цифровые.

ATM. Технология асинхронной передачи ATM использует протокол коммутации пакетов, который пересылает данные в ло­кальных и глобальных сетях фрагментами (cells) по 53 байта со скоростью до 622 Мбит/с.

Стеки протоколов

Как уже упомина­лось, многие разработчики не следуют точно стеку протоколов OSI. Они применяют свои стеки протоколов, близко напоминающие модель OSI и совместимые с ней. Напрямую могут «общаться» только сети одних протоколов.

TCP/IP (Transmission Control Protocol/Internet Protocol) был од­ним из первых стеков сетевых протоколов. IP-составляющая обеспечивает одно из лучших на сегодня определений межсетевой связи и при­меняется многими разработчиками в качестве метода взаимодей­ствия продуктов в ЛВС и ГВС.

Протоколы NetBEUI/NetBIOS фирмы Microsoft представляют собой транспортный и сетевой протоколы, не поддерживающие маршрутизацию. Обладают хорошими временными характеристиками, защитой от ошибок, легко реализуются.

Протокол NetWare SPX/IPX - это "родной" протокол фирмы Novell для сетей NetWare, который сейчас практически не используется.

Протоколы AppleTalk были определены фирмой Apple Computer в качестве способа взаимодействия систем Apple Macintosh.

Сетевое оборудование

Одна из самых распространенных на данный момент в мире сетей – это Ethernet? Который позволяет достичь наивысшего КПД пропускной способности канала – 93%. Для построения сетей этого типа используется неэкранированная (UTP) и экранированная (STP) «витая пара», коаксиал и оптоволокно. Самой дешевой и быстрой в построении сети считается «витая пара». Но эта среда передачи имеет значительное ограничение – максимальная длина сегмента 100-150 м. Но протоколы сетевого уровня позволяют соединить несколько сегментов через повторители, мосты, коммутаторы и маршрутизаторы. Количество сегментов должно быть не больше пяти.

Повторитель усиливает сигнал сетевого кабеля, который затухает на расстоянии более 100 м. Он работает на физическом уровне стека протоколов, не требует программного обеспечения и представляет собой обычно автономное устройство, не дающее непроизводительных издержек при передаче данных. Таким образом, с помощью наращивания сегментов общая протяженность сети может достигать 500 м. Компьютеры, связанные повторителем считаются принадлежащими одному сегменту. Количество компьютеров в сегменте не должно превышать 50.

Мост - это устройство уровня связи данных, объединяющее две или более сети с одной или разной топологией. Обычно это компьютер с несколькими сетевыми платами, к каждой из которых подсоединен свой сегмент ЛВС. Основной задачей моста служит обеспечение прозрачной связи между абонентами различных сетей, то есть трансляция и фильтрация MAC-кадров. Происходит это с помощью преобразования протоколов уровня MAC с адресами целевой рабочей станции. Трафик между локальными сетями не фильтруется, поэтому при сильном трафике возможны некоторые потери в производительности. Подключение к мостам про­исходит через порты.

При передаче информационных кадров мост считается неадресуемым, но при изменении активной конфигурации мосты обмениваются управляющими кадрами и в качестве адреса получателя в каждом мосту выделяется адрес одного-единственного порта, который считается управляющим.

В настоящее время многие функции мостов реализуются маршрутизаторами, которые предлагают дополнительные средства функции маршрутизации. В последние несколько лет цены на маршрутизаторы неуклонно снижаются, и это делает их лучшим вариантом объединения ЛВС.

Основной функцией любого моста является ограничение пото­ка данных между сегментами сети, поэтому так важно правильно размещать их. Для этого используется правило 80/20, в соответст­вии с которым не менее 80 % трафика данных должны быть ло­кальными, не более 20 % - внешними. Если указанное соотноше­ние не выполняется, то использование мостов становится неэф­фективным.

Если в существующей конфигурации сети невозможно удовле­творить требованию 80/20, то следует перенести часть системы из одного сегмента в другой.

Коммутаторы (коммутирующие концентраторы, switches) - сочетают в себе функции многопортового повторителя и высоко­скоростного моста. Их упрощенной «неинтеллектуальной» версией исполнения являются концентраторы (хабы), которые просто на физическом уровне соединяют сегменты сети «звездой» и рассылают все пакеты на все порты. Коммутатор (свич), работая как на канальном, так и на сетевом уровне, же создает таблицу МАС-адресов всех устройств, подключенных к его портам, и использует ее для передачи паке­тов только в требуемый порт. Наибольшее распространение получили свичи с пропу­скной способностью 100 Мбит/с. Иногда встречаются комму­таторы, имеющие порты обоих типов. Производятся коммутато­ры, работающие с разными МАС-протоколами, например Ethernet и FDDI.

Маршрутизатор требует более высокого уровня протоколов архитектуры связи, чем мост или коммутатор. Он связывает сегменты сети через сетевой уровень. Например, инструкции по маршрутизации пакетов содержатся в сетевом уровне IP. Маршрутизатор отличается от моста тем, что он может считывать адрес рабочей станции и адрес ЛВС в пакете. Благодаря этому маршрутизатор может фильтровать пакеты и перенаправляет их по наилучшему возможному маршруту, который определяет по таблице маршрутизации.

Протоколы маршрутизации определяют метод, с помощью которого маршрутизаторы могут взаимодействовать друг с другом, совместно использовать информацию о сети. Эти протоколы могут выполняться в маршрутизаторах для построения таблиц маршрутизации или обмена информацией о маршрутизации с другим маршрутизатором. Со временем таблицы маршрутизации маршрутизирующих устройств будут содержать примерно одну и ту же информацию. Два основных протокола маршрутизации в TCP/IP – это RIP и OSPF.

Шлюзы обычно работают на самом высоком уровне стека протоколов и обеспечивают взаимодействие систем и сетей, которые используют несовместимые протоколы. Примерами межсистемных продуктов являются пакет электронной почты. Они позволяют обмениваться почтовыми файлами пользователей на самых различных системах.

Это примерно тот набор элементов, которым приходится оперировать, чтобы создать самую простейшую сеть, хотя у себя дома. Понимая, что делает каждый из выше перечисленных участников конгломерата, все сетевые настройки в ОС становятся более или менее очевидны. Так что вперед, за создание своих сетей, пусть для начала маленьких, но собственных!

Автор: Александр Дудкин
alexishw@xaker.ru

15.01.2004


© Авторские права и копия защищены законом: © Дудкин Александр Константинович, 2002 г.
Копирование любых материалов только с письменного разрешения автора сайта
URL сайта: www.alexishw.mailru.com
Ваши замечания и предложения присылайте по e-mail: alexishw@mailru.com